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Abstract. We consider the flavour non-singlet Reggeon within the context of perturbative QCD. This
consists of ladders built out of “reggeized” quarks. We propose a method for the numerical solution of the
integro-differential equation for the amplitude describing the exchange of such a Reggeon. The solution
is known to have a sharp rise at low values of Bjorken-x when applied to non-singlet quantities in deep-
inelastic scattering. We show that when the running of the coupling is taken into account this sharp rise is
further enhanced, although the Q2 dependence is suppressed by the introduction of the running coupling.
We also investigate the effects of simulating non-perturbative physics by introducing a constituent mass
for the soft quarks and an effective mass for the soft gluons exchanged in the t-channel.

1 Introduction

In recent years, much attention has been given to the per-
turbative QCD simulation of the Pomeron. The reason for
this is that the reach of HERA is such that one now has
data on structure functions and differential cross-sections
for other inclusive processes which are well into the diffrac-
tive region (low-x) whilst at the same time maintaining
momentum scales for all the kinematic variables. These
variables are large enough that a renormalization-group
improved perturbative expansion summed to all orders in
leading lnx is expected to be valid. This is the region in
which one expects to be able to test the BFKL Pomeron
[1]. Notwithstanding this, it should be recalled that the
original motivation for the study of the Pomeron in QCD
was an attempt to explain how the successes of Regge
theory could be under-written by a quantum field theory.

Somewhat less emphasis has been placed on the Regge
trajectory below the Pomeron (the Reggeon) for which
phenomenological fits [2] have shown have an intercept
≈ 1

2 . In the same way that the QCD Pomeron is con-
structed from ladders of reggeized gluons with a colour
singlet projection, so the QCD Reggeon is constructed
from ladders of a reggeized quark-antiquark pair, again
with colour singlet projection.

The cleanest way to distinguish between Pomeron
dominated processes and Reggeon dominated processes is
to note that a quark-antiquark pair can be in a flavour
non-singlet state. We therefore consider quantities which
are controlled by flavour non-singlet operators. Such quan-
tities include the structure function F3 in deep-inelastic
scattering, or the spin-dependent structure functions. The
Reggeon is only expected to dominate such quantities at
sufficiently low-x, and the extraction of low-x data for such
quantities is very difficult. The spin-dependent structure
functions at low-x have recently been considered in [3].
At the moment the lowest values of x for which we have

data on F3 are not yet in the asymptotic region where we
would expect the Reggeon to dominate, but on the other
hand they are not very far away and in the same way that
HERA is currently used to test the QCD Pomeron, the
QCD Reggeon could reasonably be expected to be probed
in the not-too-distant future.

In order to construct the Reggeon within the context
of perturbative QCD, one needs first to establish that the
quark reggeizes, in the same way that the gluon reggeizes.
In other words, it is necessary to show that to leading
order in ln s, the amplitude in which the quantum num-
bers of a quark is exchanged in the t-channel, has an s
dependence given by

sαQ(t).

From standard partial wave analysis we expect αQ(t) = 1
2

in leading order and for the t dependence to arise from
higher order corrections. This was first established some
time ago [4]. However, we feel that several important fea-
tures of this derivation were not sufficiently clearly ex-
plained in [4]. We have repeated the relevant calculations
and we briefly review our method for deriving the reggeiza-
tion of the quark in Sect. 2. Once quark reggeization has
been established, an integro-differential equation can be
established for the sum of the leading ln s parts of the
amplitude for the exchange of the quantum numbers of
the Reggeon. This has been derived in [5] and we quote
the result in Sect. 3. This equation can, in principle, be
solved analytically since it involves a kernel which is con-
formally invariant (in two dimensions) such that its eigen-
functions are the representations of the conformal group.
Unlike the case of the Pomeron the leading eigenvalue is
not analytic in the coupling. This causes severe difficul-
ties when one tries to reproduce the analytic results by
numerical means. We propose a programme for numerical
solution of the integro-differential equation which is con-
sistent with the known asymptotic behaviour. This allows
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Fig. 1. The tree-level exchange of a soft quark

one to introduce modifications to the kernel, such as the
running of the coupling, which breaks conformal invari-
ance, so that the analytic approach is no longer viable,
but the numerical approach remains reliable.

In Sect. 4 we apply this to a model of flavour non-
singlet deep-inelastic scattering. We call this a model since
an arbitrary function has to be taken for the impact fac-
tor describing the emission of a Reggeon from the target
hadron. However, we do not expect either the x depen-
dence at sufficiently low x, or theQ2 at sufficiently highQ2

to be particularly sensitive to the exact nature of this im-
pact factor. We look at the effect of running the coupling
and observe that whereas this further enhances the pre-
dicted rise in the non-singlet structure functions as x → 0,
it suppresses the Q2 dependence of such structure func-
tions. Finally, we postulate that the most significant fea-
ture of non-perturbative effects in the case of the Reggeon
is to provide the soft quark and antiquark exchanged in
the t-channel with a constituent mass, and the soft gluons
an effective mass. We therefore solve the modified equa-
tion for the Reggeon in which a mass is assigned to the
soft particles. We find that this significantly suppresses
the low-x rise and that this suppression extends to values
of Q2 way beyond the assigned values of the constituent
mass. In Sect. 5 we summarize our conclusions.

2 The Reggeized quark

In this section we review the derivation of the “reggeized
quark”. The result obtained agrees with that previously
obtained [4], but in our derivation some of the subtleties
leading to the result are discussed in more detail.

We begin by considering the process

q + q̄ → g + g, (2.1)

in the Regge regime, s � |t|, where a soft quark is ex-
changed in the t-channel as shown in Fig. 1. The ampli-
tude is given by

A0(q) = (τ bτa)ij2παsv(p2)γu(p1)
ε∗2qε

∗
1

|q|2 + h.c., (2.2)

where we have introduced holomorphic coordinates in the
plane transverse to the incident momenta p1 and p2 such
that γ (γ∗) are the γ-matrices in this plane, q (q∗) are the
components of the transverse momentum transferred in
the t-channel, and ε1 (ε∗1) and ε2 (ε∗2) are the polarisation
vectors of the outgoing gluons.

We now consider the one-loop corrections which are
proportional to ln s, since it is only these contributions

Fig. 2. One-loop leading ln s corrections to q + q → g + g.
The 2-body cuts in the s-channel are shown, however (iii) and
(iv) have similar cuts in the u-channel

that are relevant for reggeization. The relevant diagrams
are shown in Fig. 2, and each of these gives the same
contribution (up to a colour factor), which may be written
as 1

α2
s

π
ln
( s
k2

)
v(p2)γu(p1)ε∗2ε

∗
1

∫
d2k

k

|k|2|q − k|2 + h.c.

(2.3)

The diagrams of Fig. 2 have colour factors

N

2
(
τ bτa

)
ij

+
1
4
δabδij (i)

−1
2N

(
τ bτa

)
ij

+
1
4
δabδij (ii)

− 1
4
δabδij (iii)

− 1
4
δabδij (iv)

where N (= 3) is the number of colours.
Adding these one-loop contributions we obtain the re-

sult for the one-loop correction to be

A1(q) = A0(q) ln
( s
k2

)
εQ(q) (2.4)

with

εQ(q) = −CF
αs

2π2

∫
d2k

kq∗

|k|2|q − k|2 , (2.5)

and CF = (N2 − 1)/2N .
At the next order a number of complications occur,

some of which are common to the problem of gluon
reggeization [1]. The first of these is that the diagrams that

1 The quantity k2, used to scale s inside the logarithms is
understood to be a square momentum which is of the order of
the square momentum transfer |t|, or some other momentum
(� s) involved in the coupling of the Reggeon at the top or
bottom of the ladder. Since we are confining our discussion to
leading logarithm, its exact value is unimportant.
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Fig. 3. The effective quark-gluon ver-
tex

contribute in leading ln s are not all of the ladder type.
However, all diagrams whose s-channel cuts contain three
intermediate particles can be reduced to a ladder-type di-
agram using an effective vertex. This is demonstrated in
Fig. 3. The Feynman rule for this effective vertex involves
the substitution of γσ in the standard rule with Γσ

Q, where

Γ σ
Q(ki−1, ki) = γσ +

2pσ
1k/i−1

βis
+

2pσ
2k/i

αi−1s
(2.6)

from which it follows that

v(p2) (ΓQ · εi)u(p1) = v(p2)γu(p1)
1
2

(
εik

∗
i−1

ki−1 − ki

+
ε∗i k

∗
i

k∗
i−1 − k∗

i

)
+ h.c. (2.7)

ki−1, ki are the transverse momenta of the incoming and
outgoing quarks, defined in terms of Sudakov variables by

kµ
i = αi p

µ
1 + βi p

µ
2 + kµ

⊥i

with k2
⊥i = −|ki|2.

We also need the equivalent effective vertex for the
emission of a gluon with polarisation εi from incoming
and outgoing vertical gluon lines with momenta ki−1, ki

and Lorentz indices µ, ν. This is given by

Γµν
G (ki, ki−1) · εi =

2pµ
2p

ν
1

s

(
εik

∗
i−1ki

ki − ki−1
+ h.c.

)
. (2.8)

In both of these effective vertices, we have assumed the
multi-Regge kinematics, namely

αi−1 � αi

|βi| � |βi−1|.
The product of these two effective vertices, summed

over the polarisations for the emitted gluon is given by

∑
pol′ns

(ΓG · ε)(ΓQ · ε) = γ

(
q∗ − k′∗|q − k|2

|k − k′|2

−k∗|q − k′|2
|k − k′|2

)
+ h.c. (2.9)

A further complication arises from the need to con-
sider diagrams in which the central cut line involves a

Fig. 4. Examples of 2-loop ladders. Diagrams with a quark or
antiquark rung have to be considered in addition to the gluon
rungs with effective vertices

quark or antiquark (as opposed to a gluon) and this is
demonstrated pictorially in Fig. 4.

Piecing all this together with the appropriate colour
factors we find that the contribution from all such dia-
grams may be written as

A2(q) =
1
2

(εQ(q))2 A0(q) + A2(q)′ (2.10)

where

A2(q)′ = −
(
CF +

N

2

)
CF (τ bτa)ij

α3
s

4π3

× ln2
( s
k2

)
v(p2)γu(p1)ε∗2ε

∗
1

×
∫
d2k1d

2k2
1

|k2|2|q − k1|2|k1 − k2|2 + h.c.

The first term suggests that the amplitude is indeed
“reggeizing”, whereas the contribution A2(q)′ cancels
against the diagrams shown in Fig. 5, in which there are
two particles in each (s-channel or u-channel) cut and
where the loop on either side of this cut is interpreted
as the reggeization of the vertical quark or gluon line. We
have now developed a general mechanism for the deriva-
tion of the reggeized quark, using the traditional “boot-
strap” approach. We make the ansatz that the quark
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Fig. 5. The complete set of leading ln s
two-loop, two particle cut diagrams

reggeizes, with Regge trajectory given by 1/2 + εQ(q) as
defined in (2.5) and show that this ansatz is self-consistent
(the summand of 1/2 will be explained shortly). We also
need to make use of the reggeization of the gluon which
has a Regge trajectory of 1 + εG(q) with

εG(q) = −N

2
αs

2π2

∫
d2k

|q|2
|k|2|k − q|2 . (2.11)

In order to develop an expression for the amplitude for
the process (2.1), whose iterative solution gives a series

A0(q) + A1(q) + A2(q) + · · · ,
we need to consider the addition of both gluon and quark
or antiquark rungs. This is demonstrated in Fig. 6. In gen-
eral these ladder diagrams lead to an integro-differential
equation of the form

∂F (s, k, q)
∂ ln s

=
∫
d2k′ K(k, k′, q)F (s, k′, q), (2.12)

in which the kernel, K, may be divided into two parts. The
effect of adding a rung gives a contribution of

Krung(k, k′, q) = − αs

2π2

k′

|k′|2|q − k′|2

×
(
CF q

∗ − CF
k∗|q − k′|2
|k − k′|2

−N

2
k′∗|q − k|2
|k − k′|2

)
+ h.c. (2.13)

The first term is precisely what one would expect from
the reggeization of the quark, whereas the second term
cancels when we take into account the fact that the quark
and gluon exchanged in the t-channel must themselves be
reggeized and this reggeization gives rise to a correction∫

d2k′ Kregge(k, k′, q) = (εQ(k) + εG(q − k)) . (2.14)

When all is pieced together we find that the effects of
adding a rung and of taking into account the reggeization
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Fig. 6. The addition of a rung involves
the consideration of both a gluon rung
with effective vertices and of a quark
rung. Only the upper-half of the dia-
grams is shown, and note that the quark
rung diagrams imply that we must have
Φ1 = Φ2

of the quarks and gluons exchanged in the t-channel is
such that

∫
d2k′ (Krung(k, k′, q) + Kregge(k, k′, q)) = εQ(q),

(2.15)

which means that the leading ln s part of the amplitude,
summed to all orders in perturbation theory, gives rise to
an amplitude of the form

sεQ(q)A0 ∼ s1/2+εQ(q), (2.16)

where the “näıve” s dependence s1/2 arises from the usual
s dependence of an amplitude in which a spin-1

2 particle
is exchanged in the t-channel and is contained in the nor-
malisation of the spinors in (2.2).

3 The integral equation for the Reggeon
amplitude and its solution

The integral equation for the perturbative amplitude for
processes involving the exchange of a Reggeon are ob-
tained by considering ladders in which the vertical lines
are a reggeized quark-antiquark pair, and the horizontal
rungs are gluons which couple to these reggeized quarks
via the effective vertex given in (2.7). The colour singlet
is projected from the two fermions exchanged in the t-
channel. This has been studied in [5]. One obtains an in-
tegral equation for the Mellin transform of the amplitude,
f(s, k, q) defined by

f̃(ω, k, q) =
∫
ds

s

( s
k2

)−ω

f(s, k, q),

where k is the transverse momentum of the incoming
quark and q is the momentum transfer (which may be
taken to be transverse). In terms of this Mellin transform

one obtains

f̃(ω, k, q) = f̃0(ω, k, q) +
α̃s

2πω

∫
d2k′

{
k′ · (k′ − q)
k′2(k′ − q)2

×
[
min

(
k

k′ ,
k′

k

)]ω

+
k′ · k

k′2(k − k′)2

+
(k − q) · (k′ − q)
(k′ − q)2(k − k′)2

}
f̃(ω, k′, q)

− α̃s

2πω

∫
d2k′

{
k′ · k

k′2(k − k′)2

+
(k − q) · (k′ − q)
(k′ − q)2(k − k′)2

}
f̃(ω, k, q), (3.1)

where we have used the notation

α̃s = CF
αs

π
,

and f̃0(ω, k, q) is the Born term obtained from the leading
order contribution consisting of the exchange of a quark-
antiquark pair (with no gluons).

There is an important difference between this equation
and the equivalent equation [1] for the Pomeron, which is
built out of reggeized gluons in a similar fashion. In the
case of the Pomeron a solution which is of the reggeized
form (i.e. a simple pole in the Mellin transform at a value
of ω equal to the Regge trajectory) is prevented by the
fact that the colour factor which arises in the projection
of a colour singlet from the two gluons in the t-channel is
twice that obtained from the projection of a colour octet
(relevant for the integral equation describing the reggeized
gluon itself). In the case of the Reggeon, a colour factor
of CF is obtained both in the case of the reggeized gluon,
and in the projection of a colour singlet from a quark-
antiquark pair. In the Reggeon case, simple reggeization
is prevented by the ω dependent factor[

min
(
k

k′ ,
k′

k

)]ω

,

which occurs inside the kernel on the RHS of (3.1). This
term arises from the fact that when one exchanges
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fermions in the t-channel such that the momenta of these
fermions appear in the numerators of the propagators,
care must be taken in setting the kinematic limits of the
phase-space integral over the longitudinal components of
momentum [5]. It is these kinematic limits which lead to
the ω dependent term in the kernel and, as we shall see
later, this has a radical effect on the solution to this equa-
tion.

Henceforth we shall be confining our discussion to the
case of zero momentum transfer (q = 0), for which for
which the second term on the RHS of (3.1) simplifies to

K̃(ω, k, k′) ⊗ f̃(ω, k′)

=
α̃s

2

∫
dk′2

k′2

{[
min

(
k

k′ ,
k′

k

)ω

− 1
]
f̃(ω, k′)

+
k2 + k′2

|k2 − k′2|
(
f̃(ω, k′) − f̃(ω, k)

)
+ f̃(ω, k)

}
, (3.2)

where we have integrated over the angular part of k, as-
suming that the Reggeon is dominated by an amplitude
which is azimuthally symmetric, i.e. that f̃(ω, k′) depends
only on the magnitude, |k′|.

This can be solved exactly by exploiting the two-
dimensional conformal invariance of the kernel to conclude
that a function of the form

f̃(ω, k) =
(|k|2)iν

is an eigenfunction of the kernel with eigenvalue ω(ν) given
by the solution to the equation

ω =
α̃s

2

[
ω

ω2/4 + ν2 − 2ψ(1 + iν) − 2ψ(1 − iν) − 4γE

]
.

(3.3)

The leading eigenvalue is given by 2

ω0 =
√

2α̃s,

which implies that the Reggeon has an asymptotic s be-
haviour of the form

s
√

2α̃s .

Another qualitative difference between the QCD Reggeon
and the QCD Pomeron lies in the fact that such a leading
s behaviour, which is not analytic in the coupling, cannot
be reproduced in an ordinary perturbative expansion in
αs, although the even orders in the expansion of this s
dependence matches the double leading logarithms found
in ordinary perturbation theory [6].

Thus, in principle, we have an analytic method for
solving the integral equation for the Mellin transform of
the Reggeon exchange amplitude. However, in order to be
able to introduce further refinements, such as the running
of the coupling or some simulation of non-perturbative ef-
fects which necessarily break the conformal invariance, one

2 We note here that −ω0 is also an eigenvalue of the kernel,
and although it is sub-leading, it will turn out to be convenient
to exploit this in our subsequent analysis.

needs to be able to carry out a programme of numerical
solution of (3.1).

This is most easily achieved by inverting the Mellin
transform to obtain an integro-differential equation

∂f(s, k)
∂ ln s

= K(s, k, k′) ⊗ f(s, k′), (3.4)

where

K(s, k, k′) ⊗ f(s, k′)

= α̃s

{∫ 1

0

dz

z

2z2

1 − z2 (f(s, kz) + f(s, k/z) − 2f(s, k))

+
∫ 1

1/s

dz

z
(f(sz, kz) + f(sz, k/z))

}
(3.5)

and we have introduced the variable z to represent
min(k/k′, k′/k). The ω dependent part of the kernel in
Mellin transform space is now encoded by the scaling of s
by a factor of z in the appropriate terms.

We know that the asymptotic behaviour of the solu-
tion to this differential equation should be sω0 . The usual
method of numerical solution of such differential equations
is to start with an initial function which has no s depen-
dence and to integrate in steps using the Runge-Kutta
method. Unfortunately, since the leading s behaviour
arises from the ω dependent part of the kernel in Mellin
transform space, which has now been transferred to the
s dependent part of f(s, k) on the RHS of (3.5), an ini-
tial function which does not contain any s dependence can
never generate the expected asymptotic behaviour in any
step-by-step numerical integration routine.

This difficulty can be circumvented by extracting the
leading sω0 behaviour. This is achieved by defining a func-
tion g(s, k) by

f(s, k) = cosh (ω0 ln(s)) g(s, k). (3.6)

The asymptotic behaviour of f(s, k) is now displayed ex-
plicitly and we expect the function g(s, k) to have a far less
dramatic s dependence. The integro-differential equation
for g(s, k) is given by

∂g(s, k)
∂ ln s

= sech(ω0 ln s)K(s, k, k′) ⊗ (cosh(ω0 ln s)g(s, k′))

−ω0 tanh(ω0 ln s)g(s, k) (3.7)

where the kernel K(s, k, k′) is defined in (3.5). We note
here that g(s, k) = constant is an exact solution of (3.7).
We may therefore start with a function, g0(k), that de-
pends only on k but not on s (which one would normally
obtain from an “impact factor” which encodes the cou-
pling of the Reggeon to the particles between which the
Reggeon is exchanged) and generate (after sufficient itera-
tions) a solution for the Reggeon exchange amplitude with
initial value g0(k) taken as the value of the amplitude at
low s.

We have checked numerically that this method repro-
duces the known analytic results in the case of a trial
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Fig. 7. The impact factors Φγ and Φp encode how the virtual
photon (or W -, Z-boson) and the proton respectively couple
to the Reggeized quark ladder. The central circle symbolises
the kernel’s role in adding rungs and Reggeizing the uprights

initial function, which has a simple Fourier transform. We
have taken

g0(k) =
|k|2

(|k|2 + 1)2

=
1
π

∫ ∞

0
dν Γ (1 + iν)Γ (1 − iν)

(|k|2)iν . (3.8)

For large s the amplitude is then given by

f(s, k) =
1
π

∫ ∞

0
dν Γ (1 + iν)Γ (1 − iν)

(|k|2)iν sω(ν),

(3.9)

where ω(ν) is given by (3.3). This can be compared with
the numerical method described above. Having established
the validity of this numerical approach, one can introduce
refinements to the kernel, which render it intractable to
analytical methods, but still open to numerical analysis. In
the next section we discuss the results of such an approach.

4 Numerical results

In this section we apply the technique discussed in the last
section to a model of deep-inelastic scattering processes at
low-x, which would be dominated by Reggeon rather than
Pomeron exchange (such as the structure function F3 for
virtual W - or Z-boson scattering, or the spin-dependent
structure functions which are intrinsically flavour non-
singlet). For the rest of this section we shall use the term
“structure function” to mean the flavour non-singlet part
of a structure function, which we expect to be dominated
by Reggeon exchange at low-x. In order to do this we
need some model for the “impact factors” which account
for the coupling of the Reggeon at the top and bottom
of the ladder, as indicated in Fig. 7. Unlike the case of
the Pomeron, there is a direct coupling of the quarks in

Fig. 8. The (lack of) dependence of results on the parameter
η in (4.1) is demonstrated. The structure function at fixed Q2

is given for six values of η from 0.6 to 2.0

the Reggeon to the virtual particle involved in the scat-
tering (photon, W -boson, or Z-boson). This means that
the upper impact factor is proportional to

δ(k2 −Q2),

where −Q2 is the square momentum of the virtual boson.
At the other end of the ladder we need the impact factor
for the coupling of the Reggeon to the target proton. This
is non-perturbative in nature and so we model this with
the simple form

Φp ∝ e−k2/ηΛ2
QCD , (4.1)

where we expect η to be of order unity, and we have not
fixed the constant of proportionality which means that
our scale remains arbitrary. This is clearly a crude esti-
mate of the lower impact factor, but we do not expect our
results for the low-x, large Q2 regime to depend critically
on the exact form of this impact factor. This is because
after a sufficient number of iterations of the kernel one
expects the amplitude to lose all “memory” of the initial
condition. As a demonstration of this, we show in Fig. 8
the variation of the structure function plotted against x
for Q2 ∼ 100 GeV2 for a range of the parameter η be-
tween 0.6 and 2.0. We see that the variation of the shape
of the structure is indeed small and the differences can be
substantially absorbed into an overall normalization.

We start by assuming fixed coupling. In this case the
behaviour of the structure function at low x for each value
of Q2 was obtained by starting with an initial function
given by (4.1) and numerically integrating (3.7) using the
Runge-Kutta method with the coupling α̃s taken to be
α̃s(Q2). From the resulting function f(x, k) (s is replaced
by 1/x), the point k2 = Q2 was selected, thereby imposing
the delta-function which represents the impact factor at
the top of the ladder. This process was then repeated for
different values of Q2.

Next we wish to include the effect of the running of
the coupling. This is achieved by promoting the coupling
α̃s in the expression for the kernel to a running coupling.
We take the larger of the momenta k and k′ as the argu-
ment of the running of the coupling, which means that the
coupling must now be taken inside the integral in (3.5).
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Fig. 9. The rise in the structure function at low-x is shown
here for four different values of Q (in [GeV]) for static αs. The
näıve dependence of x−1/2 is also shown for comparison

Fig. 10. The same as Fig. 9 but with a running coupling. Note
that the low-x rise is now even more pronounced

One immediate effect of this is that the quantity ω0, which
was the leading eigenvalue of the kernel in the case of fixed
coupling, now becomes a function of k given by

ω0(k) =
1
2

∫
dk′2

k′2 α̃s(max(k, k′))
[
min

(
k

k′ ,
k′

k

)]ω0(k2)

,

(4.2)

and it is this value of ω(k) that is used to factor off the
leading behaviour. Thus we define g(x, k) as

f(x, k) = cosh (ω(k) ln(s)) g(x, k),

and the x dependence of g(x, k) is given by (3.7) with α̃s

replaced by α̃s(max(k, k′)). Note that in this case, unlike
the case of fixed coupling, we only need to solve the cor-
responding differential equation once, since the argument
of the coupling for each iteration does not now depend on
Q2. A single pass through the range of x returns a func-
tion f(x, k) and the results for the structure function at
any value of Q2 can be read off by setting k2 = Q2.

As is always the case when we introduce a running
coupling in such integro-differential equations, we need to
impose an infra-red cutoff below which αs takes the value
αmax and ceases to run. This is because the integral in
(3.5) samples all possible momenta so that without the
imposition of such an infra-red cutoff one would run into

Fig. 11. The structure function f shown against Q for three
values of x. The coupling has been fixed for this calculation

Fig. 12. Similar to Fig. 11, but with the coupling now running.
This acts to reduce the rise at small Q

the Landau pole. We have chosen αmax to take the value
1.

In Figs. 9 and 10, we show the resulting structure func-
tion f(x,Q2) plotted against x for different values of Q2.
Fig. 9 refers to fixed coupling and Fig. 10 to running
coupling. We have also displayed a curve indicating the
x−1/2 dependence that one would expect to obtain from
the näıve counting of amplitudes in which spin-1

2 parti-
cles are exchanged in the t-channel. The enhancement at
low-x is clearly seen and at sufficiently low-x the structure
function behaves like

f(x,Q2) ∼ x−1/2+
√

2α̃s(Q2),

for the case of fixed coupling, and for running coupling we
have an even further enhancement of the low-x rise which
asymtotically behaves like

f(x,Q2) ∼ x−1/2+
√

2α̃max .

On the other hand, we see from Figs. 11 and 12 that
there is much less Q2 dependence in the rise at low-x when
the running of the coupling is taken into account. This is
consistent with recent results [7] obtained in the case of the
Pomeron with running coupling. This can be attributed
to the fact that for the Q2 dependence of the structure
functions at low-x, the effect of running the coupling is to
sample values of k2 which are larger than Q2 for which
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Fig. 13. The variation of the leading eigenvalue with propa-
gator mass, shown for four different values of Q2 (all given in
GeV2)

the running coupling is smaller than the fixed coupling
value, whereas for the Q2 independent part one is also
probing the infrared region where the running coupling is
enhanced.

Finally, we consider possible non-perturbative effects.
One important consequence of non-perturbative QCD is
that quarks acquire a constituent mass. As soft quarks
are exchanged in the t-channel in the Reggeon, it is quite
likely that this will be the most significant contribution of
non-perturbative QCD to the behaviour of the Reggeon.
We also choose to give the soft gluons an effective mass,
and so to simulate the effects of non-perturbative QCD
we assigning a mass, m, to the soft quarks and gluons.

The kernel (3.5) then becomes

Km(s, k, k′) ⊗ f(s, k′) =
∫ 1

0

dz

z

[
α̃s(k2)

z2

z2 +M2

×
(

1 + z2 +M2√
((1 + z)2 +M2)((1 − z)2 +M2)

− 1

)

× (f(s, kz) − f(s, k)) + α̃s(k2/z2)
1/z2

1/z2 +M2

×
(

1 + 1/z2 +M2√
((1 + 1/z)2 +M2)((1 − 1/z)2 +M2)

− 1

)

× (f(s, k/z) − f(s, k))

]

+
∫ 1

1/s

dz

z

[
α̃s(k2)

z2

z2 +M2 f(sz, kz)

+α̃s(k2/z2)
1/z2

1/z2 +M2 f(sz, k/z)
]
, (4.3)

in which we have defined M2 = m2/k2.
The expression for ω0(k) then becomes

ω0(k2) =
1
2

∫
dk′2

k′2 +m2
α̃s(max(k2, k′2))

×
[
min

(
k

k′ ,
k′

k

)]ω0(k2)

. (4.4)

Fig. 14. The effect of non-zero propagator masses is shown at
x = 10−3. Increasing the mass (all in GeV) leads to a reduction
at large Q due to the decrease in the leading eigenvalue ω0

Fig. 15. The same data as in Fig. 14 is shown here with a
logarithmic x-axis to demonstrate the infra-red effects of the
propagator mass

Fig. 16. The upper set of four lines show zero mass results
to provide comparison with the lower set which have m = 0.3
GeV. As expected the rise at low x has been slowed by the
non-zero mass

and it is this expression for ω0(k2) which is used to define
g(s, k) in (3.6).

The introduction of the mass term acts to reduce the
value of ω0, and a plot of this effect is given in Fig. 13.
Note that the smaller Q2 values receive a more marked
decrease in the leading eigenvalue, which further acts to
limit growth in the infra-red region.
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We show the effect of the massive propagators in
Fig. 14. Here we have plotted against Q for five values
of m, including m = 0. The effect is quite strong, even at
larger values of Q, with the reduction in f being more pro-
nounced than might be expected of a measure originally
designed to affect just the infra-red region. The reason
behind this has of course just been detailed: increasing m
reduces ω0 so that by the time we have evolved the struc-
ture function to low-x (the graph is at x = 10−3) it is
substantially reduced across its whole domain due to the
weaker leading behaviour. If we were to consider the same
function at larger x the differences between the graphs for
differing m would not be so pronounced for large Q2.

In Fig. 15 we have shown exactly the same data as in
the previous graph, but with the Q scale now logarithmic
in order to illustrate the small Q region more clearly. As
expected, the introduction of the mass term results in a re-
duction at low Q, but whereas the larger Q reduction only
becomes apparent as we evolve to low-x, the growth in the
Q ∼ m region is immediately regulated. In Fig. 16 we have
again plotted the zero mass/running coupling graphs for
four Q values, but we have also included on the same plot
the case where we take m = 0.3 GeV. Thus the upper set
of lines are the same as in Fig. 10, and the lower set show
the relative effect of the propagator’s mass. As would be
expected from our previous arguments the low-x rise in f
is reduced.

5 Summary

We have reviewed the derivation of the reggeization of
the quark. This reggeized quark is used to construct the
integro-differential equation for the amplitude of a pro-
cess in which the quantum numbers of the Reggeon are
exchanged. We have proposed a method for the numeri-
cal solution of this equation which is consistent with the
leading large s behaviour. This enables one to make mod-
ifications to the kernel in order to account for a running
coupling and for simulations of non-perturbative effects.

The experimental quantities which can be used for
probing the QCD simulated Reggeon are flavour non-
singlet quantities at low-x. In all probability the reach
of current experiments in deep-inelastic scattering are not
yet sufficient provide us with such a probe, but it may well
become possible in the near future.

We find from our numerical studies that the introduc-
tion of the running of the coupling enhances the already
sharp rise expected in the structure functions as x → 0. On
the other hand the Q2 dependence is considerably moder-
ated when a running coupling is introduced. The effects of
QCD beyond perturbation theory have been estimated by
assigning a mass to the soft particles exchanged. We find
that this has a dramatic effect in reducing the rise at low-
x, even at values of Q2 which are considerably larger than
the values of the constituent mass inserted. All of this sug-
gests that it will be even harder to isolate the kinematic
region where we might expect the results of perturbative
QCD to dominate, and although a rise at low-x is still
expected, it may well not be as dramatic as initially ex-
pected.

References

1. E. A. Kuraev, L. N. Lipatov, V. S. Fadin, Sov. Phys. JETP
44, 443 (1976); ibid. 45, 199 (1977); Y. Y. Balitski, L. N.
Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

2. A. Donnachie, P. V. Landshoff, Nucl. Phys. B 244, 332
(1984); Phys. Lett. B 296, 227 (1992)

3. B. Badalek, J. Kwiecinski, Phys. Lett. B 418, 229 (1998)
4. V. S. Fadin, V. E. Sherman, Sov. Phys. JETP 45, 801

(1977)
5. R. Kirschner, Z. Phys. C 31, 135 (1986); ibid. C 65, 505

(1995); C 67, 459 (1995)
6. R. Kirschner, L. N. Lipatov, Nucl. Phys. B 213, 122

(1983)
7. R. S. Thorne, Phys. Rev. D 60, 054031 (1999)


